

Heavy flavor measurements at the STAR experiment

Qiu, Hao (Purdue University) for the STAR Collaboration

Outline

- Introduction why heavy quarks?
- STAR detectors
 - Heavy Flavor Tracker
 - Muon Telescope Detector
- Open charm hadron measurements
 - D⁰ R_{AA}
 - D⁰ V₂
 - D_s yield
- Quarkonia measurements
 - $J/\psi p_T$ spectrum
 - J/ψ production vs. event multiplicity
 - J/ψ R_{AA}
 - J/ψ V₂
 - Y production
- Summary

Why heavy quarks?

QGP and hydrodynamic expansion

hadronization

- $m_{b.c} >> T_C, \Lambda_{QCD}, m_{u.d.s}$
- Produced early in initial hard scatterings at RHIC
- Experience the whole evolution of the medium
- Good probe to the properties of the medium

pre-equilibrium

Quarkonium dissociation due to color screening

QGP signature

STAR experiment

Heavy Flavor Tracker

- · Reconstruct displaced decay vertices to greatly suppress combinatorial background
- Challenge: short decay length, e.g. D⁰ cτ ~ 120 μm

Heavy Flavor Tracker

Heavy Flavor Tracker

Muon Telescope Detector

Muon Telescope Detector

$D^0 R_{AA}$

- R_{AA}>1 for p_T~1.5 GeV/c ⇒ Charm coalescence with a radially flowing bulk medium
- Significant suppression at high p_T in central Au+Au collisions, $R_{AA}(D) \sim R_{AA}(\pi)$ for $p_T > 4$ GeV/c \implies Strong charm-medium interaction

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\phi - \Psi_{r})] \right)$$

PRC 86 (2012) 014903, PRL 110 (2013) 112301

- Favors charm quark diffusion, when comparing with model calculations
- Lower than light hadron v_2 indication that charm quarks are not fully thermalized with the medium?

D_s production

- Strangeness enhancement in the QGP is expected to affect the yield of D_S.
- The R_{AA} of D_S is higher than unity and R_{AA} of D^0 , but statistically not significant.
- The ratio D_S/D^0 seems to be higher than prediction for p+p collision from PYTHIA.

STAR ★ J/ψ p_T spectra in p+p collisions

- NRQCD describes data fairly well at both 200 and 500 GeV
- Small tension at p_T<1 GeV/c with CGC+NRQCD

STAR ★ J/ψ production vs. event multiplicity

- Stronger-than-linear growth for relative J/ψ yield

 Soft and hard processes are correlated
- PYTHIA8 and Percolation model reproduce trends in data qualitatively
- Hint of different trends for low and high p_T J/ψ
- Similar trend as LHC results new challenge for models (like EPOS3+Hydro) to explain

$J/\psi R_{AA}$

ALICE: PLB 734 (2014) 314 CMS: JHEP 05 (2012) 063

PHENIX: PRL 98 (2007) 232301

Model I at RHIC: PLB 678 (2009) 72 Model I at LHC: PRC 89 (2014) 054911 Model II at RHIC: PRC 82 (2010) 064905 Model II at LHC: NPA 859 (2011) 114

- J/ψ R_{AA} for p_T>0 GeV/c: RHIC is smaller than LHC

 more recombination at LHC
- J/ψ R_{AA} for p_T>5 GeV/c: LHC is smaller than RHIC ⇒ stronger dissociation at LHC
- Transport models with dissociation and recombination qualitatively describe data

$J/\psi v_2$

V. Greco, C.M. Ko, and R. Rapp, PLB 595 (2004) 202

X. Zhao and R. Rapp, arXiv: 0806.1239

Y. Liu, N. Xu and P. Zhuang, NPA 834 (2010) 317

U.W. Heinz and C. Shen, (private communication)

- Initially produced J/ ψ : little or zero v_2
- Recombined J/ψ : inherit v_2 of charm quarks
- For p_T above 2 GeV/c, measured v_2 is consistent with zero \Rightarrow contribution of recombined J/ψ is small

Y production

- Signs of Y(2S+3S) from the di-muon channel
 - Challenging for di-electron channel due to Bremsstrahlung
- Hint of less melting of Y(2S+3S) at RHIC than at LHC

Other interesting results

Longitudinal J/ψ polarization at high p_T
 in p+p 500 GeV collisions

- Excess of very low p_T J/ ψ in peripheral A+A collisions
- Consistent with photoproduction

18

Summary

- HFT and MTD greatly improve open heavy flavor and quarkonia studies at STAR.
- $D^0 R_{AA}$ and v_2 show strong charm-medium interaction, but there is also an indication that charm is not fully thermalized.
- D_s yield is in accordance with predicted strangeness enhancement in the QGP.
- J/ψ p_T spectrum in p+p collisions can be described well by (CGC+)NRQCD.
- J/ψ production vs. event multiplicity shows correlation between soft and hard processes.
- J/ ψ R_{AA}, v₂ and Y production indicate that quarkonium dissociation is weaker at RHIC energy than LHC, and the recombination production is also much less.
- More exciting results are expected:
 - Factor of 2-4 improvement in D⁰ significance with new PXL offline reconstruction software
 - Factor of 2 (4) Au+Au data recorded on tape for the MTD (HFT)

Thank you

J/ψ polarization

14 16 p₊ (GeV/c) **ICHEP 2016** Qiu, Hao (Purdue Univ.)

12

10

J/ψ polarization

$$\frac{d\sigma}{d(\cos\theta)d\phi} \propto 1 + \lambda_{\theta}\cos^2\theta + \lambda_{\theta\phi}\sin(2\theta)\cos\phi + \lambda_{\phi}\sin^2\theta\cos(2\phi)$$

• The previous measurements indicate a declining trend of λ_{θ} to high p_T , but the result using Run12 data does not seem to follow this trend.

Very low p_T J/ψ excess

- Observe excess of very low p_T J/ ψ in peripheral collisions
- Features consistent with coherent photoproduction
 - Slope: 199 ± 31 (GeV/c)⁻², similar as STARLIGHT prediction for Ultra-Peripheral Collisions: 196 (GeV/c)⁻²
 - Interference at 0 < t < 0.001 (GeV/c)²
- Production cross-section independent of centrality within uncertainties

